69 research outputs found

    Learning by a nerual net in a noisy environment - The pseudo-inverse solution revisited

    Full text link
    A recurrent neural net is described that learns a set of patterns in the presence of noise. The learning rule is of Hebbian type, and, if noise would be absent during the learning process, the resulting final values of the weights would correspond to the pseudo-inverse solution of the fixed point equation in question. For a non-vanishing noise parameter, an explicit expression for the expectation value of the weights is obtained. This result turns out to be unequal to the pseudo-inverse solution. Furthermore, the stability properties of the system are discussed.Comment: 16 pages, 3 figure

    Combining Hebbian and reinforcement learning in a minibrain model

    Full text link
    A toy model of a neural network in which both Hebbian learning and reinforcement learning occur is studied. The problem of `path interference', which makes that the neural net quickly forgets previously learned input-output relations is tackled by adding a Hebbian term (proportional to the learning rate η\eta) to the reinforcement term (proportional to ρ\rho) in the learning rule. It is shown that the number of learning steps is reduced considerably if 1/4<η/ρ<1/21/4 < \eta/\rho < 1/2, i.e., if the Hebbian term is neither too small nor too large compared to the reinforcement term

    Slowly evolving random graphs II: Adaptive geometry in finite-connectivity Hopfield models

    Full text link
    We present an analytically solvable random graph model in which the connections between the nodes can evolve in time, adiabatically slowly compared to the dynamics of the nodes. We apply the formalism to finite connectivity attractor neural network (Hopfield) models and we show that due to the minimisation of the frustration effects the retrieval region of the phase diagram can be significantly enlarged. Moreover, the fraction of misaligned spins is reduced by this effect, and is smaller than in the infinite connectivity regime. The main cause of this difference is found to be the non-zero fraction of sites with vanishing local field when the connectivity is finite.Comment: 17 pages, 8 figure

    On Cavity Approximations for Graphical Models

    Get PDF
    We reformulate the Cavity Approximation (CA), a class of algorithms recently introduced for improving the Bethe approximation estimates of marginals in graphical models. In our new formulation, which allows for the treatment of multivalued variables, a further generalization to factor graphs with arbitrary order of interaction factors is explicitly carried out, and a message passing algorithm that implements the first order correction to the Bethe approximation is described. Furthermore we investigate an implementation of the CA for pairwise interactions. In all cases considered we could confirm that CA[k] with increasing kk provides a sequence of approximations of markedly increasing precision. Furthermore in some cases we could also confirm the general expectation that the approximation of order kk, whose computational complexity is O(Nk+1)O(N^{k+1}) has an error that scales as 1/Nk+11/N^{k+1} with the size of the system. We discuss the relation between this approach and some recent developments in the field.Comment: Extension to factor graphs and comments on related work adde

    Effective field theory for models defined over small-world networks. First and second order phase transitions

    Full text link
    We present an effective field theory method to analyze, in a very general way, models defined over small-world networks. Even if the exactness of the method is limited to the paramagnetic regions and to some special limits, it provides, yielding a clear and immediate (also in terms of calculation) physical insight, the exact critical behavior and the exact critical surfaces and percolation thresholds. The underlying structure of the non random part of the model, i.e., the set of spins filling up a given lattice L_0 of dimension d_0 and interacting through a fixed coupling J_0, is exactly taken into account. When J_0\geq 0, the small-world effect gives rise, as is known, to a second-order phase transition that takes place independently of the dimension d_0 and of the added random connectivity c. When J_0<0, a different and novel scenario emerges in which, besides a spin glass transition, multiple first- and second-order phase transitions may take place. As immediate analytical applications we analyze the Viana-Bray model (d_0=0), the one dimensional chain (d_0=1), and the spherical model for arbitrary d_0.Comment: 28 pages, 18 figures; merged version of the manuscripts arXiv:0801.3454 and arXiv:0801.3563 conform to the published versio

    Replica symmetry breaking in the `small world' spin glass

    Full text link
    We apply the cavity method to a spin glass model on a `small world' lattice, a random bond graph super-imposed upon a 1-dimensional ferromagnetic ring. We show the correspondence with a replicated transfer matrix approach, up to the level of one step replica symmetry breaking (1RSB). Using the scheme developed by M\'ezard & Parisi for the Bethe lattice, we evaluate observables for a model with fixed connectivity and ±J\pm J long range bonds. Our results agree with numerical simulations significantly better than the replica symmetric (RS) theory.Comment: 21 pages, 3 figure

    Spin models on random graphs with controlled topologies beyond degree constraints

    Full text link
    We study Ising spin models on finitely connected random interaction graphs which are drawn from an ensemble in which not only the degree distribution p(k)p(k) can be chosen arbitrarily, but which allows for further fine-tuning of the topology via preferential attachment of edges on the basis of an arbitrary function Q(k,k') of the degrees of the vertices involved. We solve these models using finite connectivity equilibrium replica theory, within the replica symmetric ansatz. In our ensemble of graphs, phase diagrams of the spin system are found to depend no longer only on the chosen degree distribution, but also on the choice made for Q(k,k'). The increased ability to control interaction topology in solvable models beyond prescribing only the degree distribution of the interaction graph enables a more accurate modeling of real-world interacting particle systems by spin systems on suitably defined random graphs.Comment: 21 pages, 4 figures, submitted to J Phys

    The Little-Hopfield model on a Random Graph

    Full text link
    We study the Hopfield model on a random graph in scaling regimes where the average number of connections per neuron is a finite number and where the spin dynamics is governed by a synchronous execution of the microscopic update rule (Little-Hopfield model).We solve this model within replica symmetry and by using bifurcation analysis we prove that the spin-glass/paramagnetic and the retrieval/paramagnetictransition lines of our phase diagram are identical to those of sequential dynamics.The first-order retrieval/spin-glass transition line follows by direct evaluation of our observables using population dynamics. Within the accuracy of numerical precision and for sufficiently small values of the connectivity parameter we find that this line coincides with the corresponding sequential one. Comparison with simulation experiments shows excellent agreement.Comment: 14 pages, 4 figure

    Replicated Transfer Matrix Analysis of Ising Spin Models on `Small World' Lattices

    Full text link
    We calculate equilibrium solutions for Ising spin models on `small world' lattices, which are constructed by super-imposing random and sparse Poissonian graphs with finite average connectivity c onto a one-dimensional ring. The nearest neighbour bonds along the ring are ferromagnetic, whereas those corresponding to the Poisonnian graph are allowed to be random. Our models thus generally contain quenched connectivity and bond disorder. Within the replica formalism, calculating the disorder-averaged free energy requires the diagonalization of replicated transfer matrices. In addition to developing the general replica symmetric theory, we derive phase diagrams and calculate effective field distributions for two specific cases: that of uniform sparse long-range bonds (i.e. `small world' magnets), and that of (+J/-J) random sparse long-range bonds (i.e. `small world' spin-glasses).Comment: 22 pages, LaTeX, IOP macros, eps figure
    corecore